Im vorherigen Post habe ich die Möglichkeit gezeigt, wie man eine Kombination aus UNION ALL und GROUP BY nutzen kann, um die Daten als Slowly Changing Dimension Type 2 zu historisieren. Seitdem habe ich einige Performance-Tests durchgeführt, um diesen Ansatz mit herkömmlichen Vorgehensweisen in verschiedenen Situationen zu vergleichen. Weiterlesen
Schlagwort-Archive: slowly changing dimensions
Wie vereinfache ich die Historisierung der Daten?
Die Historisierung der Daten ist eine typische aber auch rechen- und zeitintensive Aufgabe im Data Warehouse Umfeld. Man hat damit beim Beladen von historisierter Core-Schicht (auch bekannt als Enterprise Data Warehouse or Foundation Layer), Data Vault Datenmodellen, Slowly Changing Dimensions, etc. zu tun. Typische Methoden führen einen Outer Join und eine Art der Deltaerkennung aus. Diese Deltaerkennung ist wohl der kniffligste Teil, denn man muss die Null-Werte besonders beachten. Eine sehr gute Übersicht der verwendeten Techniken hat Dani Schnider in seinem Blog zusammengestellt: Delta Detection in Oracle SQL
Auf der anderen Seite bietet die SQL-Standardfunktionalität genau das Verhalten an, das hier gebraucht wird: die Group By Klausel oder Partitioning-Klausel bei analytischen Funktionen. Kann man das ausnutzen? Macht es Sinn? Wie wird dann der ETL Prozess aussehen? Können wir eventuell das Laden durch Partition Exchange weiter beschleunigen? Ich werde diese Fragen in den nächsten Beiträgen beleuchten. Weiterlesen